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1. INTRODUCTION

Cavity ring-down spectroscopy (CRDS) is a powerful analyt-
ical tool which can be effectively used to detect weak transitions
in concentrated samples or strong transitions in very dilute
samples.1�4 Although CRDS cannot compete in terms of
sensitivity with laser-induced fluorescence (LIF) or resonance-
enhanced multiphoton ionization (REMPI), it is more versatile
and may be applied in situations where LIF or REMPI would be
impractical or impossible.1

In pulsed CRDS (P-CRDS), a pulse of light several nanosec-
onds in length is coupled into an optical cavity defined by two
highly reflective mirrors. As the light traverses the cavity, it is
attenuated through repeated interaction with the cavity mirrors
and chemical absorption. A detector on the opposite side of the
cavity, usually a photomultiplier tube, detects the light trans-
mitted through the rear-cavity mirror, producing a series of
delayed pulses, the maxima of which may be used to fit an
exponential decay function. From this curve fit, the characteristic
ring-down time of the cavity for a given sample at a particular
wavelength can be determined. Therefore, it is possible to make
indirect measurements of either the concentration or the absor-
bance coefficient of the sample at a given wavelength.

Rather than coupling discrete pulses into the optical cavity,
continuous-wave CRDS (CW-CRDS) uses a continuous-wave
(CW) laser to build up intensity within the cavity.3,5,6 In practice,
this means that either the laser wavelength must be mode-
matched to the length of the cavity or that the cavity be designed
to have a near continuum of modes.1 The latter may be achieved
by constructing the optical cavity so that the ratio of the mirror
radius to mirror separation is irrational.1 Once the light within
the cavity has built up sufficient intensity, the laser is decoupled
from the cavity, and the exponential decay of the light exiting the
cavity is measured by the detector. Because the light within a
CW-CRDS setup is built up over time and few cavity modes are

excited, the technique tends to produce higher-quality spectra
than those produced by P-CRDS.1

Phase-shift CRDS (PS-CRDS) is an indirect method that uses
the phase shift between the signals entering and exiting the
optical cavity to determine the ring-down time of the sample. In
1980, Herbelin et al. first developed a phase shift method with a
modulated laser beam formeasuring photon lifetime in an optical
resonator.7 In 1996, Engeln et al. used the technique of PS-CRDS
to measure the transition frequencies of a very weak transition of
18O2.

8 In 2002, Hamers et al. combined PS-CRDS and Fourier
transform spectroscopy, resulting in a sensitivity increase of
approximately 3 orders of magnitude when compared to stan-
dard Fourier transform spectrometers.9 Tong et al. developed a
phase shift method for fiber loop ring-down spectroscopy and
applied it as an absorption detector for a flow system with a short
absorption path length in 2004.10 Later, van Helden et al.11 and
Kasyutich et al.12,13 improved the quantitative accuracy of PS-
CRDS by eliminating the interference from amplified sponta-
neous emission (ASE) of the laser.

The idea of using the phase shift between input and output
signals to measure the time constant of a decay system is not
native to CRDS. Rather, the method was originally developed in
1933 by F. Duschinsky for the purpose of measuring fluorescence
decay times.14 The equations developed in his paper described a
system in which a flat fluorescing sample was excited by a
modulated light source. When the intensity of the light source
was modulated periodically with respect to time, the fluorescence
of the sample was found to vary with the same frequency but with
a phase shift related to the decay time of the system.
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ABSTRACT: Current phase-shift cavity ring-down spectroscopy
(PS-CRDS) experiments make use of equations originally developed
for fluorescence studies. As these equations fail to take the length of
the optical cavity and the superposition of reflecting beams into
account, they lose validity as the length of the cavity increases. A new
set of equations, based solely on the principles of PS-CRDS, is
developed for determining the ring-down time from either the phase
shift or the intensity of the waveform exiting the cavity. It is shown
that the PS-CRDS equations reduce to those developed for fluores-
cence study for short cavities. The new equations provide a more accurate method in determining the characteristic ring-down time
and phase shift for long cavities, especially fiber optic cavities, which is promising in on-site chemical sensing.
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With the development of PS-CRDS, F. Duschinsky’s equa-
tions were readily adopted by Herbelin et al., Engeln et al., and
others due to similarities between the two systems.7�10 Recently,
Bescherer et al. derived the same equations for multiexponential
optical decay processes using Laplace transform of the input
beam.15 However, because Duschinsky’s equations assume that
the fluorescent system has no internal dimension, they fail to take
into account the time that light requires to traverse the cavity in
CRDS. As a direct result, the phase differences between reflected
waves inside of the cavity are not continuous as assumed in the
fluorescence equations but are functions of cavity length, mod-
ulation frequency, and the speed of transmission. Although these
changes are found to be negligible for short cavities, they can lead
to large inaccuracies for long cavities or cavities with high-density
media in which the speed of light transmission is reduced (such
as fiber-optic-based systems).

2. THEORY

2.1. Phase Shift in Fluorescence.The fluorescent system has
been previously modeled8,9 through the use of equations devel-
oped in 1933 by F. Duschinsky.14 The intensity of a sinusoidally
modulated light beam entering the system is given by

PinðtÞ ¼ I0½1þ R sinðωtÞ� ð1Þ
where t is time,Re 1 is the relative depth of modulation,ω is the
angular frequency of modulation, and I0 is the center amplitude
(intensity offset above 0) of the excitation beam. The center
amplitude of the emission beam depends on the quantum yield,
φf, of the fluorescent system

I
0
0 ¼ φf I0 ð2Þ

and the intensity of the light emitted from the fluorescent system,
Pout, is given by8

PoutðtÞ ¼ 1
τ

Z t

�¥
I
0
0½1þ R sinðωt0Þ� exp �ðt � t0Þ

τ

� �
dt0 ð3Þ

where τ is the fluorescence decay time and t0 is the time at which
the light was coupled into the cavity. Integration of eq 3 results in

PoutðtÞ ¼ I
0
0 1þ R

1þω2τ2
½sinðωtÞ �ωτ cosðωtÞ�

� �
ð4Þ

and rearranging eq 4 to a single sine function using the trigono-
metric identity derived in Appendix A leads to

PoutðtÞ ¼ I
0
0 1þ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þω2τ2
p sin½ωt � tan�1ðωτÞ�

� �
ð5Þ

By comparing eq 5 to the original intensity from eq 1, a phase
shift, j, is developed between the incident and emitted light

j ¼ �tan�1ðωτÞ ð6Þ
By measuring the phase-shift angle, the fluorescence decay time
can be determined using eq 6. This method provides an indirect
way to measure transient fluorescent decay, which is especially
important when time-resolved measurements are impossible due
to technological limitations.
2.2. Phase Shift in CRDS. A schematic diagram of a typical

CRDS system is shown in Figure 1, where an optical cavity is
composed of two parallel mirrors with high reflectivity. The input
light beam is coupled into the cavity through the front mirror,

where it is reflected back and forth within the cavity. A photo-
multiplier tube or similar optical detector located after the rear
mirror detects the light exiting from the cavity. For convenience
of discussion, a one-dimensional coordinate system will be used
with the origin placed at the front mirror.
In PS-CRDS, the incident light beam is modulated at an

angular frequency of ω. The light inside of the cavity undergoes
multiple reflections, causing a phase shift to develop between the
transmitted light and the incident light. In addition, the intensity
drops due to reflection and chemical absorption losses. Because
of similarities in inherent damping, pumping, and detection
methods, equations derived for phase-shift fluorescence have
been adapted to PS-CRDS without modification.
Although elegant, we discovered that the set of equations

described previously for fluorescence are insufficient for describ-
ing the optical behavior displayed in PS-CRDS under some
circumstances. Specifically, these equations were developed to
describe the decay time of a fluorescent sample on a plate or in a
vial, essentially representing a point in space with a negligible
spatial distribution. As such, these equations do not account for
(1) phase shifts induced by a long traveling distance caused by
multiple reflections and (2) the myriad of overlapping waves
found within a PS-CRDS cavity. In order to accurately model PS-
CRDS and determine the ring-down time, it is necessary to take
both of these factors into consideration. In comparison to
fluorescence studies, light in a PS-CRDS system must travel
not only in a temporal domain but also in a spatial domain due to
the significant numbers of reflections that occur.
For a linear cavity with a length L, a wave modulated at an

angular frequency ω with a velocity c (the speed of light in the
cavity media) originating from the front mirror will be reflected
back by the rear mirror and reflected again by the front mirror.
When returning to the point of origin, a phase shift of 2ωL/c
results. To illustrate the superposition of waves within an optical
cavity, the first few waves inside of a cavity are drawn schema-
tically in Figure 2. In this figure, P0 is the transmitted portion of
the incident beam which propagates to the right, P00 is the
reflection of P0 due to the rear mirror, and P1 is the first reflected
right-propagating beam. The amplitude decrease due to optical
losses is neglected in Figure 2, but it is included in a later
derivation of the equation. Due to the distance traveled, P1
develops a phase difference of 2ωL/c relative to P0.
In comparison to the general waveform given by eq 1, a full

traveling wave equation must be used to address the spatial
changes inside of the cavity. The intensity of the pumping beam
is

Pinðt, xÞ ¼ I0 1þ R sin �ωt þωx
c

� �� �
ð7Þ

Because the incident beam propagates in the positive x direction,
the ωt term in eq 7 has an opposite sign to that in eq 1. The

Figure 1. A schematic diagram of a typical cavity ring-down experiment.
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intensity of the initial light beam entering the cavity can be
written as

P0ðt, xÞ ¼ I0ð1� RÞ 1þ R sin �ωt þωx
c

� �� �
ð8Þ

where R is the reflectivity of the cavity mirrors assuming that they
are identical and x (0 e x e L) is the position within the cavity.
Here, mirror reflection is assumed to be the only source of optical
loss at the mirrors, and the fraction of transmitted light is equal to
(1�R). Considering the thin thickness of mirrors, the phase shift
introduced by the mirrors is ignored. Because only waves
propagating in the positive x direction (toward the right in
Figures 1 and 2) will exit the cavity and reach the detector, one
can ignore the waves propagating in the negative x direction.
Thus, the equation for the nth (n g 0) positive wave may be
written as

Pnðt, xÞ ¼ I0ð1� RÞ 1þ R sin �ωt þωx
c
þ 2ωLn

c

� �� �
ð9Þ

If each round trip of the cavity causes the signal to decay by e�a

due to optical losses introduced by mirror reflection, chemical
absorption, and optical couplings, then eq 9 can be modified to

Pnðt, xÞ ¼ I0ð1� RÞe�an 1þ R sin �ωt þωx
c
þ 2ωLn

c

� �� �
ð10Þ

The optical loss per round trip can be linked to the ring-down
time of the cavity. The time that it takes light to complete a round
trip within the cavity is given as

tr ¼ 2L
c

ð11Þ

Now, if (1� e�a) is the loss per round trip of the cavity and the
ring-down time, τ, is the time to decay to e�1 of the original
intensity, then the number of round trips, n, required for the
intensity of the signal to be reduced by a factor of e is

n ¼ 1
a

ð12Þ

and therefore, τ may be written as

τ ¼ ntr ¼ 2L
ac

ð13Þ
Collecting the following variables

b ¼ 2ωL
c

ð14Þ

u ¼ �ωt þωx
c

ð15Þ

Ic ¼ I0ð1� RÞ ð16Þ

allows Pn to be written simply as

Pn ¼ Ice
�an½1þ R sinðuþ bnÞ� ð17Þ

Using an infinite series equation derived in Appendix B,16 the
sum of all of the reflected waves propagating in the positive x
direction can be expressed as

S ¼ ∑
¥

n¼ 0
Pn ¼ IcRea½ea sinðuÞ þ sinðb� uÞ�

e2a � 2ea cosðbÞ þ 1
þ Ic
1� e�a

ð18Þ

In eq 18, the wave intensities are added noncoherently. In PS-
CRDS, the modulation wavelength is usually much longer than
the cavity length; therefore, stationary interference cannot be
formed. For long cavities, there are numerous cavity modes
inside of the cavities. Hence, a quasi-continuous intensity dis-
tribution can be assumed in this case. Furthermore, making a
variable substitution

A ¼ e2a � 2ea cosðbÞ þ 1 ð19Þ
permits eq 18 to be rewritten as

S ¼ IcR
ea

A
½ea sinðuÞ � sinðu� bÞ� þ Ic

1� e�a
ð20Þ

Using the trigonometric identity derived in Appendix C, the two
sine terms in eq 20 can be combined, and Smay be simplified to

S ¼ IcR
eaffiffiffi
A

p sin uþ tan�1 sinðbÞ
ea � cosðbÞ

� �
þ Ic
1� e�a

ð21Þ

By comparing eq 21 with the pumping beam eq 7 at the front
mirror position (x = 0), the following phase shift is found

j ¼ ωx
c
þ tan�1 sinðbÞ

ea � cosðbÞ ð22Þ

In PS-CRDS experiments, the phase shift is normallymeasured at
the exiting end of the cavity (x = L). Substituting eq 12 for a and
eq 13 for b in eq 22 yields

j ¼ ωL
c

þ tan�1
sin

2ωL
c

� �

e2L=τc � cos
2ωL
c

� � ð23Þ

The first term in eq 23 is the phase shift if the light only makes a
single pass through the cavity. The second term represents the
phase shift introduced by wave overlapping inside of the cavity.

Figure 2. A schematic diagram of reflections of modulated light beams
within a cavity.
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Equation 23 may be rearranged for the ring-down time

τ ¼ 2L

c ln cot j�ωL
c

� �
sin

2ωL
c

� �
þ cos

2ωL
c

� �� � ð24Þ

By combining trigonometric terms in the denominator, a sim-
plified equation for describing the relationship between the ring-
down time and the phase shift can be obtained

τ ¼ 2L

c ln
sin jþωL

c

� �

sin j�ωL
c

� � ð25Þ

Because the detected signal must pass through the mirror at
the end of the cavity, the intensity term in eq 21must be scaled by
a factor of (1� R). Therefore, the output light beam observed by
the detector is equal to

Pout ¼ IcRð1� RÞ e
affiffiffi
A

p sin uþ tan�1 sinðbÞ
ea � cosðbÞ

� �
þ Icð1� RÞ

1� e�a

ð26Þ
which may be rewritten in a similar form as the input beam
defined by eq 7

Pout ¼ I
0
0½1þ R0 sinð�ωt þ jÞ� ð27Þ

By comparison, the center amplitude of the exiting beam is

I
0
0 ¼ Icð1� RÞ

1� e�a
¼ I0ð1� RÞ2

1� e�2L=τc
ð28Þ

while the phase shift can be determined using eq 23 or 25. The
relative modulation depth of the exiting beam is reduced to

R0 ¼ R
e2L=τc � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e4L=τc � 2e2L=τc cos
2ωL
c

� �
þ 1

s ð29Þ

New equations of the phase shift, center amplitude of mod-
ulation, and relative modulation depth have been derived specif-
ically for PS-CRDS. While these physical quantities are indepen-
dent of the cavity length in the fluorescence model, they are
related to the cavity length in the new theory. This is a
consequence of the spatial propagation of light inside of the
cavity.

3. DISCUSSION

Equations 25, 28, and 29 allow the ring-down time of a PS-
CRDS system to be related to directly measurable physical
quantities, such as phase shift, center amplitude of modulation,
and relative modulation depth. Although it is, in principle,
possible to solve for the ring-down time using the center
amplitude and the modulation depth, these variables are un-
suitable in practical applications due to laser power fluctuations
and the weak intensity of the transmitted light. On the other
hand, lock-in amplifiers can provide phase differentiation be-
tween two electrical signals with a resolution of hundredths of a
degree. Therefore, phase-shift measurements are the favored
choice for CRDS spectroscopic measurements.

In CRDS techniques, the ring-down time is given by1,15

τ ¼ L

c½�lnðRÞ þ ∑
i
εiCidi� ð30Þ

where ε, C, and d are the absorption coefficient, concentration,
and optical path length of the absorbing chemical species, i,
respectively. By comparing eqs 30 and 25, the total absorbance of
chemical species, Abs, can be expressed as

Abs ¼ ∑
i
εiCidi ¼ ln Rþ 1

2
ln
sin jþωL

c

� �

sin j�ωL
c

� � ð31Þ

Using eq 31, the concentration or absorption coefficient of the
chemical species can be determined directly by measuring the
phase shift.

Although conceptually similar, the equations describing fluor-
escence and PS-CRDS have significant differences. While the
phase shift is assumed to be independent of the cavity length in
the fluorescence model, the length of the cavity is predicted to
affect the measured phase shift in actual PS-CRDS experiments.
Nevertheless, when the length of the cavity is short, the total
distance traversed by the light in the cavity is negligible, and the
equation describing the ring-down time of a PS-CRDS system
reduces to that of the fluorescence system, as shown in the
following discussion.

Taking the limit of eq 25 as the length of the cavity goes to
0 permits comparison between the equations developed for
fluorescence study and PS-CRDS. Using the l’Hopital’s rule,
the limit can be evaluated, which yields the negative of the
fluorescence equation, eq 6

lim
L f 0

τ ¼ lim
L f 0

2L

c ln
sin jþωL

c

� �

sin j�ωL
c

� �
¼ tanðjÞ

ω
ð32Þ

The sign difference between eqs 32 and 6 is due to the sign
difference of theωt term between eqs 7 and 1 for incident beams.
This difference can also be explained by the experimental setup
and principle of the two methods. In a fluorescence system, the
modulated light is held back by excited molecules to be released
at a later point in time. Conversely, for a PS-CRDS system,
measurements of the incident and transmitted signals are made at
the same time at different locations. Therefore, with reference to
the incident light beam, the light transmitted through the PS-
CRDS system will develop a positive phase shift, while the light
released from the fluorescence plate will develop a negative shift.
The sign of phase shift is unimportant in actual PS-CRDS
experiments.

Alternatively, a Taylor series expansion can be performed to
further illustrate the difference between eqs 25 and 6. In eq 25,
ωL/c is usually a small parameter in comparison to the phase
shift, j, and a Taylor expansion of eq 25 centered at ωL/c = 0
yields

ωτ ¼ tanðjÞ � 2
3 sinð2jÞ

ωL
c

� �2

þO
ωL
c

� �3

ð33Þ
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The first term of the Taylor series is the same as the fluorescence
equation, eq 6, and the second term represents the correction
resulting from our theory. In actual laboratory experiments, the
phase shift is normally kept at around 45� for optimal perfor-
mance of the lock-in amplifier. If δ% is chosen as the minimum
for a considerable correction to the first term of the Taylor series
at j = 45�, a criterion can be derived from eq 33 for using the
fluorescence equation in PS-CRDS

ωL < 0:122c
ffiffiffi
δ

p
ð34Þ

For example, the cavity length should be less than 36 m when the
light is modulated at 1 � 106 rad 3 s

�1 in order to use eq 6 and
remain within a 1% tolerance for accuracy. Because the angular
modulation frequency, ω, and the cavity length, L, are inversely
proportional, a low modulation frequency may be used to reduce
the impact of a long cavity. However, changes of the modulation
frequency may be limited by radio frequency interference or the
capability of optical and electronic devices. For long cavities,
eq 25 should be used to improve the accuracy of ring-down time
determination.

In order to visualize the differences that can result between
these two sets of equations, sample calculations using eq 25 have
been performed assuming ω = 1� 106 rad 3 s

�1 and c = 3� 108

m 3 s
�1. The ring-down time as a function of the phase shift for

three lengths of cavities is shown in Figure 3. It should be noted
that the PS-CRDS plots start from a nonzero phase shift
corresponding to the minimum time required for light to
propagate through the cavity. This minimum phase shift is about
20� for a 100 m cavity and is proportional to the length of the
cavity.

The PS-CRDS plots in Figure 3 closely resemble a tangent
function as used in fluorescent studies, and the ring-down time
goes to infinity when the phase shift angle approaches 90�. For
short cavities, the fluorescence equations developed by F.
Duschinsky provide an accurate model of the PS-CRDS system.
Indeed, as shown in the inset in Figure 3, when the length of the
cavity is on the order of 10 m or less, the difference between ring-
down times calculated using the fluorescence and PS-CRDS
models is on the order of picoseconds for small phase shifts,

which is negligible for most CRDS experiments. This difference
is further reduced for large phase shifts.

In conventional CRDS experiments where the cavity is formed
by two mirrors in a vacuum tube, the length of cavity is usually
less than 1m. Correspondingly, the light decays so quickly due to
reflections that the phase difference caused by the total propaga-
tion length becomes insignificant. In this case, the system can be
modeled well using the simple tangent function developed for
fluorescence studies. As the cavity length increases, however, the
difference between the fluorescence and PS-CRDS equations
increases exponentially.

In PS-CRDS, reduction of the speed of light is equivalent to an
increase in the length of the cavity. Thus, if the cavity medium is
something other than vacuum or gas, the speed of light changes
due to index-of-refraction effects have to be considered. For fiber
optic cavities, the cavity medium has a refractive index of about
1.5, which reduces the speed of light by approximately 33%.
Consequently, a larger phase shift results, and the difference
between the PS-CRDS and fluorescence equations is more
pronounced for fiber optic cavities.

To better illustrate the relative difference between the fluor-
escence and PS-CRDS methods, the percentage difference
between the two theoretical models is calculated for τ and
plotted in Figure 4 for three lengths of cavities. The percentage
difference is more pronounced for small phase-shift angles and
approaches a constant value when the phase angle is close to 90�.
As expected, the percentage difference for a 1 m cavity is too
small to be observed. However, for a 100m cavity, the percentage
difference can reach more than 100% for small angles.

Given the excellent optical transmission and flexibility of
modern optical fibers, CRDS techniques using optical fibers as
the cavity media have been developed in the past decade. Cavities
ranging in length from several meters to several kilometers have
been reported.6,10,17�20 As most of these fiber cavities are less
than 100 m long, the difference between the ring-down times of
the two theoretical models is generally within 100 ns and is
therefore generally difficult to observe considering the uncer-
tainty of measurements. Although uncommon, cavities longer
than 1 km have been studied previously in CRDS experiments.6,21

Figure 3. Comparison of ring-down times calculated using equations
derived for fluorescence and PS-CRDS. Figure 4. Percentage difference of ring-down times calculated using

equations derived for fluorescence and PS-CRDS for three cavity
lengths.
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Unfortunately, application of the PS-CRDS equations to these
experiments could not be performed as techniques other than
PS-CRDS were utilized in the experiments. It is acknowledged
that experimental data are necessary to confirm the validity of the
new theory. In the future, PS-CRDS experiments will be specially
performed with long cavities and high modulation frequency.
Results generated from these experiments will be crucial for
proof of concept.

In a PS-CRDS system that contains chemical species of
interest, absorption of light reduces the ring-down time and thus
the measured phase shift. As indicated in Figure 3, the difference
between the two theoretical models is more noticeable for small
phase shift angles. For a cavity with a given length, the error
associated with the old methodology increases as the molar
absorptivity of the chemical species increases. However, strong
absorption reduces the light intensity received by the detector,
which results in unstable signals and consequently increases the
uncertainty of phase angle measurements. Hence, the error of the
old methodology may not be picked up easily in real absorption
experiments.

4. CONCLUSION

PS-CRDS yields high-quality spectra and has been shown to
be a highly efficient and low-cost alternative to pulsed CRDS.
Furthermore, with the use of the equations presented in this
paper, it is possible to extend the accuracy of the technique to
long, flexible fiber optic cavities that are promising for
applications requiring sensitive and durable fiber optic field
equipment.

Phase-shift equations derived from fluorescence studies are
simple and provide good accuracy for short cavities. For long
cavities, the light propagation time within the cavities is too large
to ignore. In this case, the fluorescence equations lose their
predictive power, and the proper phase-shift equations for PS-
CRDS should be used to model experimental data. In the new
theoretical framework, superposition of enormous numbers of
reflecting light waves within the cavity is calculated and results in
a phase shift between the pumping and exiting beams. In future
work, phase-shift experiments with long fiber cavities will be
tested to verify the validity of the newly derived PS-CRDS
equations.

’APPENDIX A

Let K = tan θ
Therefore

sin x ( k cos x ¼ sin x ( tan θ cos x

¼ 1
cos θ

ðsin x cos θ ( cos x sin θÞ

¼ 1
cos θ

sinðx ( θÞ

As

1
cos θ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanðθÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p

Hence

sin x ( k cos x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
sinðx ( tan�1 kÞ

’APPENDIX B

∑
¥

n¼ 1
e�an sinðbnþ cÞ ¼ cosðcÞ ∑

¥

n¼ 1
e�ansinðbnÞ þ sinðcÞ ∑

¥

n¼ 1
e�an cosðbnÞ

The two sums can be found in Efthimiou’s work in 200616

∑
¥

n¼ 1
sinðnxÞe�nt ¼ e�t sin x

1� 2 cos xe�t þ e�2t

∑
¥

n¼ 1
cosðnxÞe�nt ¼ e�tðcos x� e�tÞ

1� 2 cos xe�t þ e�2t

Substitution of these two equations yields

∑
¥

n¼ 1
e�an sinðbnþ cÞ

¼ ea cosðcÞ sinðbÞ þ ea sinðcÞ½cosðbÞ � e�a�
e2a � 2ea cosðbÞ þ 1

¼ ea½cosðcÞ sinðbÞ þ sinðcÞ cosðbÞ� � sinðcÞ
e2a � 2ea cosðbÞ þ 1

¼ ea sinðbþ cÞ � sinðcÞ
e2a � 2ea cosðbÞ þ 1

Then

∑
¥

n¼ 0
e�an sinðbnþ cÞ

¼ sinðcÞ þ ∑
¥

n¼ 1
e�an sinðbnþ cÞ

¼ sinðcÞ þ ea sinðbþ cÞ � sinðcÞ
e2a � 2ea cosðbÞ þ 1

¼ ea½ea sinðcÞ � 2 sinðcÞ cosðbÞ þ sinðbþ cÞ�
e2a � 2ea cosðbÞ þ 1

¼ ea½ea sinðcÞ � sinðcÞ cosðbÞ þ sinðbÞ cosðcÞ�
e2a � 2ea cosðbÞ þ 1

¼ ea½ea sinðcÞ þ sinðb� cÞ�
e2a � 2ea cosðbÞ þ 1

’APPENDIX C

k sin x ( sinðx� x0Þ
¼ k sin x ( sin x cos x0 - cos x sin x0
¼ ðk ( cos x0Þ sin x - cos x sin x0

¼ ðk ( cos x0Þ sin x -
sin x0

k ( cos x0
cos x

� �

Let

k0 ¼ sin x0
k ( cos x0

Then

k sin x ( sinðx� x0Þ ¼ ðk ( cos x0Þðsin x - k0 cos xÞ
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Using Appendix A

¼ ðk ( cos x0Þ½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k02

p
sinðx - tan�1 k0Þ�

¼ ðk ( cos x0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin x0

k ( cos x0

� �2
s

sin x - tan�1 sin x0
k ( cos x0

� �� �8<
:

9=
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ( 2k cos x0 þ 1

p
sin x - tan�1 sin x0

k ( cos x0

� �� �
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